La “trofobiosis” como teoría de la resistencia de las plantas

La “trofobiosis” como teoría de la resistencia de las plantas

  • 26
    Shares

En un programa de control integrado los factores tróficos deberán ser ampliamente considerados; no se deberán seleccionar más los fungicidas y los insecticidas únicamente según su relativa inocuidad para los enemigos naturales de las plagas, sino también en función de su acción profunda sobre la planta y considerándose sus eventuales repercusiones por trofobiosis sobre la dinámica de las poblaciones de plagasPIERRE GRISON
  1. La “trofobiosis” como teoría de la resistencia de la planta

El caso estudiado en el capítulo precedente, el cual envuelve el determinismo de la resistencia de diversas plantas a la helminthosporiosis, nos mostró la imposibilidad de evidenciar la eventual existencia de cualquier factor antagonista a este bongo.  Innumerables veces se puso en duda la hipótesis de las “fitoalexinas” o “alexinas” (literalmente: compuestos de proteínas), como explicación del fenómeno de la inmunidad por diferentes investigadores.

Así, WOOD (1972) llama la atención contra esta hipótesis precisando que “si existen numerosas aseveraciones Según las cuales la resistencia estaría ligada a la presencia de tales toxinas en las plantas sanas, la mayor parte de ellas no son muy convincentes”.’ En lo que menciona respecto a la resistencia del maíz a Helminthosporium turcicum, OBI (1975) observa que numerosos tipos de resistencia a este hongo no podrían ser imputados a una eventual producción de fitoalexinas. Por otro lado, KIRALY et al (1972) destacara que ciertas observaciones sobre las brocas del trigo (Puccinia recondita Rob y Desm. graminis Pers) conducen al concepto de la “respuesta hipersensitiva” de una planta hospedera a la infección Este tipo de resistencia está caracterizado por la desorganización, oscurecimiento y muerte (necrosis) de las células en tos lugares de la infección.

Estos mismos autores hacen la relación de experiencias que muestran que la necrosis hipersensitiva con relación con la producción de una fitoalexina es sólo una consecuencia y no una causa de la resistencia de la papa y el fríjol a Phytophthora infestans y del trigo alas brocas. Ellos concluyen así: “En otras palabras, en la interacción natural de incompatibilidad hospedero–patógeno no era la necrosis de los tejidos del hospedero lo que inhibía o impedía al patógeno proseguir su crecimiento, sino, antes de la necrosis, uno o varios mecanismos desconocidos inhiben o matan al patógeno”. Es el estudio de los factores de sensibilidad de la planta lo que nos ayudará a analizar minuciosamente el determinismo del fenómeno inverso, el de la resistencia.

Para eso, se hace necesario retomar los trabajos del patologista francés DUFRÉNOY, al cual la Academia de Agricultura acaba de rendir un homenaje. DUFRÉNOY (1936), analizando las repercusiones de diferentes factores culturales sobre la resistencia de la planta, como las correcciones y fertilizaciones orgánicas, resalta que: “Lo que varía en la célula es la concentración de determinadas sustancias absorbidas del medio exterior; en condiciones desfavorables para su utilización, estas sustancias se pueden acumular en las soluciones denominadas ‘vacuolares’, en la forma de sal mineral o ácidos orgánicos”.

DUFRÉNOY puntualiza que estas “condiciones desfavorables” pueden tener origen en desequilibrios en la fertilización, tanto de los macronutrientes, como de los “clásicos” N, P, K, o de los oligoelementos. Transcribimos el determinismo de sensibilidad tal como es concebido por DUFRÉNOY: “Toda circunstancia desfavorable a la formación de nueva cantidad de citoplasma, esto es, desfavorable al crecimiento, tiende a provocar en la solución vacuolar de las células una acumulación de compuestos solubles inutilizados, como azúcares y aminoácidos; esta acumulación de productos solubles parece favorecer la nutrición de microorganismos parásitos y, por tanto, disminuir la resistencia de la planta a las enfermedades parasitarias”. En otras palabras: un estado de proteólisis dominante en los tejidos conduce a una sensibilidad en relación con los parásitos.

Este concepto parece confirmado por el análisis del fenómeno inverso: el de la resistencia. Así, TOMIYAMA (1963), analizando los fenómenos fisiológicos y bioquímicos de la resistencia de las plantas, señala que la fungo– toxicidad de los compuestos fenólicos, “admitiéndose que exista, no es muy elevada”, y que los otros grupos importantes de toxinas tampoco son altamente tóxicos. Sus propios experimentos referentes a Phytophthora infestans parasitando las células epidérmicas de las hojas de la papa, muestran que la mayor parte de las hifas intracelulares continúan vivas cuando sobreviene “la muerte hipersensible”.

Estas hifas intracelulares parecen necesitar de diez horas o más para morir, después de la muerte hipersensible de la célula hospedera. En resumen, todo lleva a creer que, sin ninguna intoxicación, el hongo parásito simplemente muere de inanición. Se deduce, consecuentemente, que la resistencia de la planta debería ser inherente a un óptimo de proteosíntesis. Efectivamente, ése es el resultado del análisis de TOMIYANA (op. cit.), quien registra qué “se observó un aumento de las proteínas en los tejidos resistentes”.

Esto es, también, lo que sugiere otra observación del mismo autor: “La acumulación de almidón, el aumento de protídeos, los compuestos fenólicos y la respiración, indican que los materiales transportados están en relación con un metabolismo acelerado en el tejido que se muestra resistente al ataque de los parásitos”. Así, no es debido a ningún efecto tóxico de los compuestos fenólicos que se ejerce la resistencia, sino más bien como consecuencia de una carencia de elementos nutricionales solubles.

La misma carencia es el resultado de un estímulo de la proteosíntesis, que está acompañada de la producción de fenoles. Además, TOMIYAMA termina su trabajo observando la necesidad de más estudios profundos relacionados con los factores nutricionales. Parece justificado nuestro concepto de la trofobiosis, según el cual: “Todo proceso vital se encuentra bajo la dependencia de la satisfacción de las necesidades del organismo vivo, sea vegetal o animal” (CHABOUSSOU, 1960)

En otras palabras, esto significa que la planta o, más sencillamente, el órgano será atacado sólo en la medida en que su estado bioquímico, determinado por la naturaleza y por el contenido de sustancias solubles nutricionales, corresponda a las exigencias tróficas del parásito en cuestión. Es útil observar que estas relaciones de orden nutricional ya habían sido sospechadas en 1956 por GARBER.  Este autor escribió: “Si el parásito prolifera o metaboliza extensivamente en un hospedero, el hospedero debe abastecer todos los elementos nutritivos requeridos por el parásito; por la misma razón, un hospedero susceptible presenta un ambiente inhibidor ineficaz”.

GARBER (1956) proporciona un ejemplo de alteraciones en la virulencia de mutantes bioquímicos de Klebsiella pneumoniae. Los mutantes que necesitan de treonina, tirosina, leucina, histidina o uracilo, conservan su virulencia.  Él concluyó que la relación nutricional se encuentra, así, perfectamente demostrada. Y continúa: “Si el parásito no puede proliferar o metabolizar exclusivamente en el hospedero, no puede ser virulento”. Nos gustaría hacer aquí una segunda observación con relación a las sustancias solubles como elementos nutricionales indispensables para los diversos parásitos. Es obvio que, afirmando esto, no pretendemos que todos los parásitos —como ácaros, insectos, hongos o virus— sean tributarios de un régimen alimentario idéntico. En realidad, esto sería testimoniar una profunda falta de conocimiento de la diversidad de las necesidades nutricionales de estos varios organismos.

Todavía, todos estos organismos —que se pueden clasificar de “inferiores”— debido a su equipamiento enzimático, exigen alimentarse de sustancia solubles, las únicas capaces de asimilar. Así, es gracias a un estado predominante de proteólisis en los tejidos de la planta, que puede ser consecuencia de diversos factores —entre los cuales los tratamientos con agrotóxicos— que la parásita encuentra los elementos solubles convenientes. Por eso es capaz de crecer y multiplicarse en una planta ya perjudicada en su crecimiento normal.

  1. Necesidades nutricionales de los “parásitos” animales

Según ciertos puristas, el termino “parásito” debe de estar reservado para los enemigos naturales de las plagas, que usan el cuerpo de estas para efectuar una parte de su evolución. No obstante, decidirnos conservar este vocablo para designar las propias plagas, pues caracteriza bien la naturaleza de las relaciones que unen a la planta con los organismos —cualesquiera que ellos sean— que viven a sus expensas.

Con el estudio del determinismo de la selección de la planta por el insecto o ácaro, podemos afirmar que estamos en el meollo de la entomología agrícola. De salida se plantea una cuestión fundamental: ¿la elección del animal se debe a una respuesta a factores atractivos o repulsivos emitidos por la planta, o esta es seleccionada por la superioridad que ofrece al fitófago? Son numerosos los trabajos desarrollados para responder a esta cuestión tan delicada, que exige mucha atención para no caer en la trampa del finalismo. Se desarrollaron diversos métodos de investigación.

Citamos, especialmente, las observaciones de los insectos en su medio natural, su acción predadora, el examen del divertículo esofágico y de los excrementos, las adaptaciones estructurales, los métodos especiales, de los cuales el más reciente es muy interesante: cultivos sobre medios nutritivos artificiales o sintéticos. Así, diversos autores pudieron mostrar la estrecha relación existente entre la morfología de las mandíbulas de Acridae y de Tettigonidae y las formas de su aprehensión del alimento.

Esto se constituye en la demostración de las relaciones que unen la anatomía del insecto con su comportamiento alimentario y su nutrición. Aún, en relación con el descubrimiento y el ataque de la planta, se distinguieron dos tipos de respuesta del insecto. El insecto estaría gobernado por dos tipos de estímulos:

  • Los “token stimuli” (o estímulos signos), cuya naturaleza puede ser olfativa o gustativa, pero cuya característica sería acusar la presencia de productos desprovistos de cualquier valor alimentario en los tejidos de la planta. Entre estos, se pueden citar: los glicósideos, los alcaloides, las saponinas, los aceites esenciales, los taninos, etc.
  • Los estímulos gustativos, que responden a la existencia de factores nutricionales, tales como azúcares, protídeos, vitaminas, etc.

Es dudoso que las controversias sobre la respectiva acción de estas dos categorías de estímulos no hayan estado desprovistas de intenciones extracientíficas. Por ejemplo, en relación con la infalibilidad, real o supuesta, de lo que se ha convenido en llamar instinto.

THORSTEINSON (1957) mostró que los “token stimuli” ejercen su máxima acción sensorial en relación a una dieta cuando ésta presenta el mayor valor nutritivo. Fue lo que vimos con los trabajos de SCOTT y GUTHRIE en el capituló precedente. Estos autores lograron hacer que las larvas de Ostrinia nubilalis consumieran maíces reputados como resistentes, suplementándolos con una dieta adecuada.

Es, también, lo que se verifica en los trabajos de KENNEDY (1951) sobre los pulgones: “Hay una especie de discriminación sensorial ejercida por los pulgones que está asociada más al desarrollo fisiológico de las plantas, que a la clasificación botánica, y que está ligada a la nutrición de los afidios, cuando ésta se evalúa por la fecundidad”. Esta discriminación se ejerce especialmente en función de la edad de la hoja de una misma planta.

Así, KENNEDY (op. cit.) observa que las hojas en crecimiento y las senescentes, se muestran más susceptibles, en relación con Myzus perscae y Aphis fabae, que las hojas maduras de las mismas plantas. La hipótesis para explicar tales efectos es que la nutrición ofrecida por estos dos tipos de hojas es especialmente rica en compuestos orgánicos nitrogenados solubles y de alto valor nutritivo: aminoácidos libres y almidones.

Estos compuestos se forman especialmente en las partes en crecimiento (con diferentes matices entre las hojas jóvenes y muy jóvenes), y en el período de senescencia, cuando los prótidos se disocian en aminoácidos. La proteólisis, entonces, predomina sobre la proteosíntesis (KENNEDY, 1958). También se debe notar la preferencia de los pulgones por ramas y plantas atacadas por molestias virales.  Así, Aphis fabae se reproduce cerca de una vez y media más rápido sobre plantas con estas enfermedades que sobre plantas sanas.

Veremos nuevamente este fenómeno, ligado a la composición bioquímica de la planta, cuando estudiemos las enfermedades virales. Esta correlación entre la elección de la planta por el animal y su valor nutricional se encuentra, igualmente, en otros insectos como, por ejemplo, el gusano de seda (Bombyx mori) o en los ácaros (CHABOUSSOU, 1969).

Se trata de determinar, lo más precisamente posible, no sólo los elementos nutricionales que entran en juego, y que sabemos que serán, de manera general, productos solubles (aminoácidos y azúcares reductores), sino también su equilibrio móvil en la planta. Ahora vamos a examinar lo que sabemos sobre las necesidades nutricionales de los principales órdenes de insectos: De una manera general, los insectos tienen necesidad de:

  • Sales minerales: El potasio es indispensable para los coleópteros, los lepidópteros, los dípteros y blatáridos.
  • Azúcares: las necesidades son muy variadas.
  • Aminoácidos: fue posible mostrar que diez aminoácidos son comunes a los insectos y los vertebrados. La diferencia fundamental es que, en los insectos, estos aminoácidos deben estar disponibles bajo forma libre, y no sintetizados en protídeos o proteínas más complejas, como para los vertebrados.
  • Lípidos: numerosos insectos son capaces de sintetizar sus reservas lipídicas a partir de hidratos de carbono.
  • Ésteres: los insectos son incapaces de sintetizar el núcleo esterol y deben, por tanto, encontrarlo obligatoriamente en su dieta. Así, la producción de huevos viables de Musca doméstica, exige la presencia de colesterol, y otros ésteres no pueden sustituirlo (BERGMANN, 1965). Confirmando esta acción, LE BERRE y PETAVY (1965) pudieron mostrar la relación entre la presencia de ésteres en el medio nutritivo y la viabilidad de los huevos de Locusta migratoria.

Los autores HARLEY y THORNSTEINSON (l967), experimentaron 20 productos químicos vegetales, estudiando el desarrollo de la longevidad y del comportamiento alimentario de un saltamontes, Melanotus bivittatus Say.  En concordancia con los resultados presentados, ellos concluyen que “en el comportamiento alimentario de este insecto, el papel de los productos químicos secundarios es informarlo sobre las dietas para escoger”.

Los ésteres mostraron el mayor efecto, simultáneamente, sobre el comportamiento alimentario, la longevidad y el crecimiento del saltamontes. Así, se llega a la hipótesis de que la distribución de los ésteres en la planta podría facilitar el mecanismo de las relaciones entre el insecto y la planta hospedera. Estudiando el caso de los ácaros, veremos que también reaccionan positivamente a la presencia de ésteres en la dieta.

Es necesario observar que las repercusiones de los ésteres fueron mucho menos estudiadas que las de los aminoácidos o azúcares y que, conforme mostraron DUPEYRON y DUPEYRON(1969), el enriquecimiento de la planta en nitrógeno proteico está acompañado de un aumento de ésteres.

  • Vitaminas: solamente las vitaminas del grupo B, hidrosolubles, son indispensables para los insectos.  Los medios nutritivos artificiales contienen, ordinariamente, diez vitaminas.

3.      Los desequilibrios nutricionales

Dos diferentes factores nutricionales enumerados arriba, los azúcares y los aminoácidos, fueron los más estudiados y, especialmente, las repercusiones de su equilibrio sobre el potencial biótico del insecto en cuestión. Al principio, se hace distinción entre alimentos energéticos, que mantienen la vida —se trata principalmente de los azúcares- y los alimentos plásticos, necesarios para la formación de nuevos tejidos, que son productos nitrogenados.

No obstante, se observó que esta distinción no es absoluta: los hidratos de carbono pueden ser necesarios para la utilización de las proteínas de la dieta.  Los expertos conducidos con soluciones nutritivas artificiales parecen confirmar este hecho, tanto desde el punto de vista de la preferencia, como del nivel del potencial biótico. Estos trabajos se refieren principalmente a pulgones, pero también a algunos otros insectos y ácaros.

Con relación a los pulgones, recordemos las investigaciones de MITTLER y DADD (1965) con Myzus persicae. Ellas establecieron que, si el azúcar es fundamental para la vida larval, una mezcla de aminoácidos esenciales, potasio, magnesio y fosfatos, es necesaria para que se produzca un crecimiento apreciable. Sin aminoácidos la longevidad permanece inalterada, pero la fecundidad es mucho más baja. MITTLER (1967) observa el efecto fago–estimulante de los azúcares: la nutrición es mediocre o inexistente en las dietas que presentan un bajo contenido de sacarosa (menos del 5%). Lo mismo ocurre con bajas concentraciones en aminoácidos (menos del 1%).

Para la sacarosa, la escala óptima se sitúa entre 10 y 20%. Para los aminoácidos, la ingestión del alimento aumenta con las concentraciones crecientes en la dieta, alcanzando hasta el 3%.  Después de este límite, ella decrece levemente. El autor observa que esto explica las diferencias en los ataques en función de la época, ya que las concentraciones en sacarosa y aminoácidos varían a lo largo del año. Agregamos que ocurre lo mismo con todos los otros factores susceptibles de actuar sobre la fisiología de la planta, especialmente los tratamientos con agrotóxicos y la fertilización.

Son consideraciones análogas que desarrolla HOUSE (1967-1969), después de haber estudiado el comportamiento alimentario de la mosca Pseudosarcophaga affinis, en relación con dietas sintéticas. Los resultados presentan una preferencia nítida por una dieta equilibrada. Este autor específica “que los factores no son nutricionales, como aceites esenciales, glicósidos, etc., susceptibles de obrar sobre la actividad, por su gusto, olor o color, y otros ‘token stimuli’, no son, en absoluto, responsables por la preferencia”. En resumen, la escogencia del insecto recae sobre una dieta bien determinada: la dieta F, que contiene 1,125% de aminoácidos y 1,5% de glucosa.

La capacidad de elaborar las proteínas depende del equilibrio de la dieta, especialmente entre aminoácidos, sales y los otros elementos nutritivos, como la composición en minerales. Estos resultados fueron confirmados por diferentes investigadores. Volveremos a ellos cuando estudiemos las repercusiones de los agrotóxicos sobre la multiplicación de los pulgones. El estudio del comportamiento de los lepidópteros conduce a las mismas conclusiones.

Vimos que la resistencia del maíz a las larvas de Ostrinia nubilalis no se puede explicar por eventuales efectos tóxicos de una sustancia que estaría presente en los tejidos. BECK y HANCE (1958) mostraron que un determinado número de aminoácidos tienen efectos significativos en relación al comportamiento de nutrición de los primeros estados larvales de la larva. Así, la duración media de los períodos de ingestión del alimento, está aumentada por un determinado número de aminoácidos, particularmente por la L–alanina, el ácido aminobutírico, la L–serina y la L–treonina.

Sin duda, no es necesario indagar en otro lugar el determinismo del ataque a maíces reputados resistentes, cuando son artificialmente suplementados con una dieta adecuada que contenga estos elementos nutricionales (SCOTT y GUTMRIE, 1966). Aún en los lepidópteros, KNAPP et al. (1965) observaron que los linajes de maíz resistentes a Heliothis zea no presentaban ninguna diferencia en la composición de las proteínas en aminoácidos.

En las muestras no proteicas estos linajes resistentes mostraron una concentración menor en aminoácidos, al contrario de los linajes susceptibles, que revelan concentraciones muy elevadas. Lo mismo ocurre con los azúcares reductores: un linaje susceptible, MPI7 x MP319 presenta el 22,53% de estos, en relación con el peso de materia verde, mientras que un linaje, resistente como F44xF6 apenas mustra el 15,03%.

También el estudio del comportamiento alimentario de la larva del algodonero, Earias fabia, mostró que son las diferencias en los contenidos en aminoácidos de las diversas dietas, los que explican su utilización por las larvas, con repercusiones inherentes sobre el crecimiento (MEHTA y SAXENA, 1973). La misma naturaleza de los aminoácidos también interviene. Los experimentos referentes a las preferencias alimentarias de trips, llevadas a cabo con dos especies, sobre vides y mamona, mostraron que las vides atacadas presentaban una ausencia total de lisina, histidina y tirosina. MARDZHANJAN et al. (1965), estudiando el determinismo de la multiplicación del ácaro Tetranychus urticae por el DDT, sobre el algodonero, observaron la desaparición de ciertos aminoácidos libres, especialmente la histidina, entre otras perturbaciones bioquímicas.

Todavía con referencia a los trips, SAXENA (1970) comprobó que las variedades de cebolla resistentes contenían glicina, histidina y cistina. Esto parece ser una confirmación del papel “disuasivo” de un aminoácido como la histidina. Antes que pasemos al caso de los ácaros, observemos que existe una correlación positiva directa entre las especies de plantas seleccionadas por los acridios y su valor, en lo que se refiere a la longevidad, al crecimiento y al potencial de reproducción de estos insectos (MULKERN, 1967).

Los ácaros fueron estudiados de manera más específica, debido a sus multiplicaciones después de tratamientos con numerosos agrotóxicos. Se utilizaron diversos métodos de investigación, como las repercusiones de la fertilización, las de los agrotóxicos, la creación sobre plantas (ellas mismas acondicionadas por determinadas soluciones nutritivas) y, en fin, la creación directa sobre medios nutritivos artificiales. Frecuentemente fue cuestionado el nitrógeno soluble (CHABOUSSOU, 1969).

La especie Tetranychus urticae, fácil de criar, fue particularmente estudiada.  STORMS y NORDDINK (1970), a propósito del contenido de las plantas en aminoácidos, determinan que el sustrato de los ácaros está constituido por el contenido vacuolar de las células. Para los ácaros, como para los insectos, son exactamente las sustancias solubles que interfieren en las repercusiones de la dieta. Según RODRIGUEZ (1967), T. urticae sería capaz de sintetizar numerosos aminoácidos como alanina, ácido aspártico, cistina, ácido glutámico, glicina, prolina, serina y treonina a partir de la glucosa. Para esta especie de ácaros, los aminoácidos esenciales serian arginina, histidina, isoleucina, leucina, metionina, fenilalanina, tirosina y valina. RODRIGUEZ observa que estaría confirmado que cualitativamente las necesidades de los ácaros por aminoácidos, son iguales a las de los insectos y, groseramente, análogas a las de la rata.

Las sustancias nitrogenadas no constituyen los únicos elementos nutricionales de los ácaros: los azúcares también intervienen, como lo demuestra inicialmente FRITZCHE (1961). En el frijol, la fecundidad del T. urticae difiere según la variedad y está en estrecha relación con el contenido de azúcares reductores de las hojas. FRITZCHE explica igualmente las diferencias de fecundidad del mismo ácaro, en relación con diversas hortalizas, así como la influencia del estado fisiológico de la planta —en este caso el lúpulo — sobre la gravedad de los ataques.

El mismo autor también revela un fenómeno al cual volveremos: la influencia de ciertas prácticas culturales sobre la multiplicación del ácaro rojo, Panonychus ulmi Koch, en manzanos. Se trata de la naturaleza de la fertilización: la cobertura muerta de las pajas propicia poblaciones relativamente débiles, en comparación con una fertilización a base de abonos verdes. FRITZCHE (op. cit.) también mostró que en el frijol la carencia de potasio acarrea una elevación del contenido de azúcares reductores.

De ahí el efecto nefasto de numerosas fertilizaciones desequilibradas. La influencia del estado fisiológico de la planta sobre la nocividad del ácaro se demostró varias veces, especialmente por POE (1971). El autor observa que en la fresa, T. urticae se multiplica de una forma más acelerada sobre plantas con frutos, que sobre fresas en crecimiento y sin frutos. Ahora, en el análisis, las hojas de las plantas con frutos mostraron niveles más altos de sacarosa, en comparación con las plantas sin frutos.

DABROWSKI (1973) mostró, después que RODRÍGUEZ, que un cierto número de azúcares presentaron un efecto de fago–estimulación significativamente más elevado que el más eficaz de los aminoácidos utilizado aisladamente. MEHROTRA (1963) demostró que T. urticae posee numerosas glucosidades capaces de hidrolizar diversos hidratos de carbono, como maltosa, sacarosa, trealosa, melilosa, lactosa, melisitosa y rafinosa.  De la misma forma, este trabajo sugiere que T. urticae contiene todas las enzimas necesarias para la utilización de las fosfato–hexosas en el proceso de Embden–Meyerhof, excepto la desidrogenasa láctica.

Se llega a la conclusión de que son, ante todo, las relaciones entre las sustancias nitrogenadas y los azúcares, las que determinan tanto la susceptibilidad de la planta al ataque, como la fecundidad del ácaro. RODRÍGUEZ (1967) demostró que los elementos nutritivos sirven efectivamente de estimulantes de la nutrición y que, por lo menos en una primera aproximación, un cierto equilibrio entre aminoácidos y azúcares, asegura el máximo de fecundidad.

Así, los ensayos de creación sobre dieta artificial, mostraron que, si la longevidad de T. urticae se aumenta, bajándose el nivel de aminoácidos al 0,5% y manteniendo el de la sacarosa en el 2%, la fecundidad y la fertilidad se reducen en aproximadamente el 50%. La dieta óptima para el desarrollo de los huevos presentaría una proporción aminoácidos/sacarosa de 1,5% a 2%. Agreguemos que otros factores alimentarios estrechamente ligados, como en los insectos, también repercuten sobre la reproducción y el ataque a la planta.

Esto ocurre con los elementos fosforados (CANNON y CONNEL, 1965). Determinadas contradicciones parecen, explicarse por la naturaleza del metabolismo de la planta y en función de las respectivas proporciones de los diversos elementos nutritivos.  Así, HENNEBERRY (1963) registra una mayor fecundidad de T. telarius (Igual a T. urticae), aumentando el nitrógeno suministrado y absorbido, y una reducción en la presencia de mas P y el total de hidratos de carbono.

La contradicción con ciertos resultados procedentes del autor, según él mismo, se explicaría porque, en este estudio, el total de hidratos de carbono y el fósforo están en correlación negativa con el nitrógeno absorbido. Ahora, en las plantas deficientes en nitrógeno, un contenido elevado de azúcares implica una caída en la formación de proteínas.

Esto también explicaría que, en las etapas ulteriores de la planta, cuando el tamaño de las hojas es función de las posibilidades fotosintéticas, se puede producir el efecto inverso. En la conclusión de este estudio, relativo a las necesidades nutricionales de los insectos y de los ácaros, los puntos principales que se destacan, se pueden resumir así:

  • La susceptibilidad de la planta es función de la existencia de factores nutricionales en sus tejidos, especialmente elementos solubles presentes en el vacuolo de las células y, en particular, aminoácidos y azúcares reductores, como en el caso de moluscos y crustáceos. Parece bien establecido que numerosos insectos y ácaros están desprovistos de todo poder proteólico.
  • Es necesario un cierto equilibrio entre los elementos nitrogenados y los azúcares, para asegurar, a cada especie animal, una dieta óptima para su crecimiento y su reproducción. Mientras tanto, la propia naturaleza de estos elementos puede interferir, ya que las diferentes especies no presentan exigencias nutricionales idénticas.
  • Hay influencia de diversos factores ambientales o de la naturaleza de las plantas, que confirman los efectos de la nutrición sobre la susceptibilidad, como la época del año, la variedad, la edad de la hoja y la naturaleza de la fertilización.
  • Como en el caso de la Ostrinia nubilalis, se vio cómo SCOTT y GUTHRIE (1966) pudieron tornar sensible un híbrido resistente, suplementándolo con una dieta nutricional adecuada (que contiene principalmente ácido ascórbico, además de otras sustancias nutritivas). Esto condujo a los autores a concluir que:  “Los experimentos de creación muestran que, a pesar de que las larvas comen hojas que pueden contener la toxina, o el repulsivo (tesis de BECK), sobreviven y se desarrollan rápidamente”.

Esto constituye la demostración de que la resistencia se encuentra realmente ligada a una falta en la planta de elementos necesarios para la plaga. También se intentó lo contrario, esto es, tomar resistente una planta sensible por medio de un suplemento nutricional. Así, KIRCHER et al. (1970) mostraron, en la alfalfa, que ninguna de las savias de variedades resistentes volvió resistentes a los tallos de los clones sensibles al pulgón Theriophis maculata.

Esto prueba, resaltan ellos, que el determinismo de la resistencia está excluido de toda acción tóxica o repulsiva. Al contrario, como para Ostrinia nubilalis en relación con el maíz, fue posible mostrar que Solanum demissum, resistente a Leptinotarsa, es perfectamente aceptado a partir del momento en que se infiltran sus hojas con el jugo extraído de la papa, Solanum tuberosum. Los autores concluyen que la resistencia de S. demissum resulta de su no-aceptación como alimento, y esta anorexia provoca la atrofia de los ovarios del insecto.

Por tanto, disponemos de dos pruebas suplementarias de la estrecha correlación entre el valor nutricional de la planta en relación con el parásito y del ataque que de esto resulta. Sobre este asunto veremos lo que se refiere a los parásitos vegetales, y especialmente a los hongos patógenos.

  1. Las necesidades nutricionales de los hongos patógenos

Contrariamente a los entomologistas y acarologistas, que se inclinan estusiastamente sobre las necesidades de los animales como objeto de sus estudios, parece que los fitopatologistas estuvieron menos tentados por los dos hongos parásitos.  Excepto algunos casos raros, ellos siquiera se preocuparon por los problemas que involucran las relaciones entre la planta —definida por su estado bioquímico— y la resistencia a sus agresores.

En lo máximo, como en el estudio del caso de la helminthosporiosis, ciertos patólogos se consagraron a la investigación de productos antagonistas. Vimos que, semejante al caso de los insectos, esta vía llevaba a un problema. Así, exactamente como para el determinismo del ataque de la planta por las plagas, somos reconducidos al estudio de los factores nutricionales necesarios para estos organismos inferiores. A nuestro entender, HORSFALL y DIMOND (1957) son los primeros que tomaron las eventuales relaciones entre la susceptibilidad de la planta a la enfermedad y el contenido de azúcares en los tejidos como hipótesis de trabajo.

Ellos observaron que una carencia de boro y ciertos tratamientos con reguladores de crecimiento, tenían por resultado afectar el contenido de los tejidos en azúcares y, consecuentemente, la sensibilidad de la planta a su eventual parásito. Estos autores, trabajando sobre Alternaria solani del tomate, anotaron la observación de un práctico, según la cual las Bull plants, esto es, cargadas de hojas, pero desprovistas de frutos, se mostraron libres de ataques de Alternaria.

La emasculación de todas las flores tuvo por resultado inmunizar al follaje con relación a la dolencia.  Y, recíprocamente, las plantas con abundancia de flores, se mostraron altamente susceptibles a la enfermedad. Los autores concluyen: “Los frutos sacan de las hojas alguna sustancia que es responsable por la ‘resistencia’ en relación con la Alternaria, y que no podría ser sino el azúcar. Ahora, si esta tentativa de relacionar el estado bioquímico de la planta con la enfermedad es meritoria, es necesario darse cuenta de que atribuir la resistencia sólo al contenido de los tejidos en azúcares, es concluir de manera un tanto precipitada.

Prosiguiendo su tentativa de demostración, HORSFALL y DIMOND (op. cit.), recuerdan la observación corriente, de la mayor susceptibilidad a la Alternaría de las hojas viejas del tomatero, que las jóvenes. Estos autores justifican el hecho porque estos órganos senescentes contienen menos azúcares.

Sin embargo, la edad de las hojas afecta igualmente la naturaleza y la cantidad de los elementos nitrogenados. Aunque la proteólisis es predominante en las hojas viejas, estas se muestran más ricas en productos nitrogenados solubles que son nutricionalmente sensibilizadores en relación con los hongos parásitos. Re–encontramos aquí la noción fundamental de que la resistencia no podría ser atribuida a esta o aquella sustancia considerada antagonista a priori, presente en los tejidos de la planta hospedera, pero mucho más a una carencia tradicional.

En el caso de la Alternaria, la resistencia estaría ligada a una deficiencia en elementos nitrogenados solubles o, más exactamente, a una relación muy baja N soluble/Azúcares. Como ya observamos, en el caso de la helminthosporiosis, los azúcares no presentan ninguna propiedad fitotóxica. Hay otra observación de HORSFALL y DIMOND (op. cit.) que puede dar lugar a una interpretación totalmente contraria.

Los autores observaron que los esquejes de tomate, en tránsito para los mercados, se volvían susceptibles a la Alternaria durante la noche. Ellos creyeron poder concluir que se debía al consumo de azúcar que ocurre en este período. Sin embargo, con más lógica, se puede atribuir tal sensibilización, en este período del ciclo día–noche, a la destrucción de las proteínas y a la translocación de los productos nitrogenados que se derivan de ellas. Esta actividad proporciona al hongo parásito los elementos nitrogenados necesarios para su desarrollo.

Por tanto, la distinción que hacen HORSFALL y DIMOND, de “molestias a altos y bajos contenidos de azúcar”, se podría transformar en molestias medidas en función de la relación nitrógeno soluble/azúcares reductores. Así, la helminthosporiosis, clasificada por estos autores como “molestia al bajo contenido de azúcar”, normalmente se debe clasificar entre las enfermedades en relación con N soluble/azúcares relativamente elevada, ya que el azúcar no muestra ningún efecto antagónico al hongo.

Esta concepción no presenta sólo un interés teórico, sino que nos permite, por un acondicionamiento apropiado de la planta, resistir mejor las diversas agresiones que ella puede sufrir. Veremos esto a través de la naturaleza y equilibrio de la fertilización, por la utilización de tratamientos foliares con productos nutricionales (macro y oligo–elementos) y tratamientos de semillas, cuya terapéutica se realiza a través de una acción indirecta sobre el metabolismo de la planta. Analizando las concepciones de GRAINGER (1967), igualmente basadas sobre el contenido de azúcares en los tejidos, llegamos a la misma conclusión.

Observando que la susceptibilidad de las plantas a las molestias durante todo el ciclo evolutivo del crecimiento, GRAINGER recuerda que los patólogos distinguen “ataques primarios” y “ataques secundarios”, separados por un intervalo de buena salud relativa, en numerosas enfermedades de cereales. Otro ejemplo: Phytophthora infestans, cuyas infecciones son muy graves sobre los brotes recién salidos de los tubérculos, es incapaz de contaminar las papas en la mitad del ciclo del crecimiento.

De ahí la relatividad de los términos genéticos de “sensibilidad” y de “resistencia”. GRAINGER no parece dar valor absoluto a la “resistencia”, exclusivamente definida genéticamente, pero ve una relación entre el ataque de la planta y su estado bioquímico caracterizado por la relación Cp/Rs, en la cual Cp representa el peso total de los hidratos de carbono y Rs es el peso seco residual de los tejidos. Esta relación expresaría el potencial de vulnerabilidad del hospedero, tanto en relación con las bacterias patógenas, como con los hongos parásitos; GRAINGER dice que los azúcares son elementos nutricionales de primera necesidad para los hongos patógenos.

Él escribe: “Estas sustancias contribuyen (con el nitrógeno y la ceniza4), no sólo para la misma constitución del agente patógeno, sino que también son una fuente de energía para su crecimiento, ya que el nitrógeno y la ceniza no son materias energéticas”. El mismo GRAINGER reconoce que esta relación no siempre es estrecha y que el crecimiento de la planta también parece intervenir. Según él mismo, se hace necesario establecer una relación inversa entre los dos factores, donde Rs revela la amplitud del crecimiento en período dado. Rs representa, en parte, el contenido en proteínas, que está estrechamente ligado con el crecimiento.

Consecuentemente, la relación Cp/Rs escogida por GRAINGER se aproxima mucho a la de C/N, o de azúcares/elementos nitrogenados. GRAINGER está forzado a concordar que, si la mayor parte de los hongos parásitos son exigentes en azúcares como, por ejemplo, Phytophthora infestans, algunos otros, como Pythium sp. tienen “poca atracción” por los azúcares. En este caso es, en consecuencia, sobre todo a expensas de los elementos nitrogenados, que ellos se desarrollan.

Las brocas y los carbones también harían parte de esta categoría de hongos.  Se concluye que las necesidades nutricionales de los hongos se podrían mostrar diferentes según la categoría a la cual pertenecen, lo que nos parece bastante normal. Así, retomemos las concepciones de HORSFALL y DIMOND, pero corregidas, teniéndose en consideración el contenido de los tejidos en nitrógeno soluble, principalmente bajo la forma de aminoácidos libres. GRAINGER da una verdadera escala del “potencial de vulnerabilidad” de la planta, basada en la relación Cp/Rs.

De este modo, lo que él llama de “fase de la barrera fisiológica”, que corresponde, de hecho, a la inmunidad, estaría caracterizada por una relación inferior a 0,4; 0,5 o 1, según el género del agente patógeno. La fase denominada “primera fase receptiva” corresponde a una relación Cp/Rs entre 0,4 y 1 para los agentes patógenos poco exigentes en azúcares, o entre 0,5 y 1 para los agentes patógenos “normales”.

La fase denominada “epidémica” ocurre cuando la relación Cp/Rs se sitúa entre 1 y 10; cuanto más elevada la relación, más grave es la epidemia. GRAINGER distingue una “fase de tolerancia”. Esta ocurriría después de una fase de hipersensibilidad. En este caso, la relación cae de 10 a 1, y la planta tiende a superar la molestia, si estuviera atacada. Finalmente, en la fase “hiper–sensible”, Cp/Rs es mayor que 10: es el caso de los brotes recién salidos de las semillas, bulbos o tubérculos con altos contenidos de azúcares. GRAINGER observa que, debido a la influencia de los factores ambientales, estas diferentes fases de la sensibilidad a la enfermedad no se presentan siempre en el mismo orden.

“Ciertos hospederos son no receptivos durante una gran parte del período en que las temperaturas son adecuadas para una actividad intensa de la mayor parte de los parásitos. Por otro lado, las fases de hipersensibilidad extremadamente peligrosas y las fases de tolerancia, menos receptivas, ocurren cuando las temperaturas son relativamente bajas y los agentes patógenos menos activos Interpretaremos esto observando que la proteosíntesis se encuentra inhibida con bajas temperaturas, causando una elevación en el contenido de los tejidos en sustancias solubles.

Este fenómeno está ligado a la exacerbación de la sensibilidad de la planta en relación con la molestia, ya que la naturaleza y la gravedad de la enfermedad están determinadas por la naturaleza y por el nivel de las sustancias solubles nutricionalmente necesarias al parásito en cuestión. Observemos que, para los hongos patógenos, la cuestión de la “consecución” de la planta hospedera no existe, una vez que las esporas, emitidas en número considerable, están casi siempre presentes en el medio ambiente.

Aquí, tal vez aún más que para las plagas, es el estado fisiológico de la planta o del órgano, lo que actúa en la sensibilidad o, caso que se prefiera, en la resistencia. Estas consideraciones nos llevan a la noción de “períodos críticos” en el ciclo fisiológico de la planta. Son ¿pocas en el curso de las cuales la fisiología y la resistencia de los órganos evolucionan debido a ciertos procesos metabólicos que acompañan, como por ejemplo, el crecimiento, la madurez y la senescencia de la hoja o la formación y el desarrollo de los órganos reproductores.

Así, el follaje de la planta se puede encontrar más o menos sensible —o resistente— a los ataques de las diversas plagas, según la época considerada. Precisamente, son los diversos factores capaces de intervenir en la fisiología y, por tanto, en el estado bioquímico de la planta o del órgano lo que estudiaremos ahora, como ya hicimos, rápidamente, en el caso de la helminthosporiosis.

5.      Los diversos factores capaces de actuar sobre la proteosíntesis y, por tanto, sobre la resistencia de la planta.

Estos diversos factores se pueden clasificar en 3 categorías:

  1. Factores intrínsecos, que envuelven la constitución genética de la planta, entre los cuales se puede distinguir:
    • La especie y la variedad.
    • La edad de los órganos de la planta.
  2. Factores abióticos, que provisionalmente consideramos en conjunto:
    • El clima: energía solar, temperatura, humedad, precipitación y eventuales influencias cósmicas (la luna).
  3. Factores culturales. Distinguimos:
    • El suelo: tanto desde el punto de vista de la composición química como de la estructura y aireación.
    • La fertilización: en la cual distinguiremos fertilización orgánica, mineral y los oligoelementos.
    • La práctica del injerto: está demostrada la influencia del portainjerto sobre la fisiología del injerto y recíprocamente.
    • Los tratamientos con agrotóxicos: que colocamos como causa del desencadenamiento de “desequilibrios biológicos”.

La influencia de la especie y de la variedad, que nadie controvierte, dio lugar a importantes investigaciones de orden genético buscando obtener las variedades resistentes. Es más, no se debería perder de vista que los genes no son más que uno de los factores que gobiernan el metabolismo de la planta. Como pudo observar GROSSMAN (1968): “La producción de plantas resistentes fue, hasta aquí, reservada a la genética. Es una vía penosa y que conduce, frecuentemente, a un éxito apenas temporal”.

Y añadía esta reflexión, a propósito de la práctica de determinadas terapias: “Tal vez fuese más sencillo y más eficaz, en el futuro, conferir la resistencia a las plantas mediante la aplicación de productos químicos”. Está planteado el problema de la modificación del metabolismo de la planta, en el sentido de la resistencia, o sea, en la dirección inversa a la que conduce a los “desequilibrios biológicos”, por las repercusiones de los agrotóxicos.

Antes que podamos tomar la vía inversa de estos fenómenos, o sea, estimular, en lugar de reprimir la resistencia, es necesario analizar el proceso nefasto. Este fue explicado por la incidencia de los agrotóxicos sobre el metabolismo que ahora será estudiado más de cerca, en función de nuestra teoría de la trofobiosis.

BIBLIOGRAFÍA

Algunas de las referencias que aparecen en el texto no figuran dentro de la bibliografía debido a que tampoco se encuentran en los documentos originales de Francis Chaboussou.

  1. BECK S.D y HANSE W. 1958. Effect of arnino–acids in feeding behavior of the European corn borer: Pyrausta nubiliasis Húbn. “J. Insec. Physiol.”, 2, 85-96.
  2. BERGMANN E. D. 1965. Les steroides des Insectes. “Bull. Soc. Chim. Fr.”,26876 91; ref.
  3. CANNON W. N. e CONNELL W. A. 1965. Populations of Tetranychus atlanticus MeG. (Acarina: Tetranychidae) on Soybean supplied with various levels of nitrogen, phosphorus and potassium. “Ent. exp. et applic.”, 8, 158-161.
  4. CHABOUSSOU F. 1967. La trophobiose ou les rapports nutritinnels entre la Plante-hôte et ses parasites. “Ann. Soc. Ent. Fr.”, 3(3). 797-809.
  5. CHABOUSSOU F. 1972. La trophobiose et la protection de la Plante. “Revue des Question Scientifiques”, Bruxelas, t. 143, no. 1, p. 27-47 y no. 2, p. 175-208.
  6. DABROWSKI Z.T. 1973. Studies of the relationship of Tetranychus urticae Koch. and host plants. IV. Gustatory effect of sorne carbohydrates. “Buí 1. Ent. Pologne”, t. 43, 521-33, Wroclaw.
  7. DADD R.H. y MITFLER T.E. 1965. Studies on the artificial feeding of the aphid Myzus percicae Sulzer. III. Some major nutritional requirernents. “J. Ins. Physiol.”, II. 717-43.
  8. DUFRÉNOY J. 1936. Le traiternent du sol, desinfection, amendement, furnure, en vue de cornbattre chez les plantes agricoles les de grande culture les affections parasitaires et les maladies de carence. “Ann. Agron. Suisse”, 680-728.
  9. DUPERON P y DUPERON R. 1969. Gènese des stérols, dans les divers organes de la plantule de Haricot (Phaseo!us vulgaris). Influence de l’isolernent. “C.R.Ac. Sciences”, ser. D., t. 268, 2, 306-309.
  10. FRITZCHE R., WOLFFGANG H, y OPEL H. 1957. Untersuchungen über die Abhängigkeit der Spinnmilbenvermehrung von dem Ernährungszustand del Wirtspflanzen “Z. Pflanzeneräh”, 78, nº 1, 1327.
  11. FRITZCHE R. 1961. Einfluss der Kultumassnahmen auf die Entwicklung von Spinnmilbengradationen. “Med. Land. Gent.”, 1088-1097.
  12. GRAINGER J. 1967. La Cp/Rs, nouvelle clef de phytopathologie. “Span”, vol. 10, p. 44-49.
  13. GROSSMANN F. 1968. Confered resistance in the host. “Word Review of Pest Control”, 7, 176-183.
  14. HARLEY KI.S. y THORSTEINSON A.J. 1967. The influence of plant chemicals on the feeding behavior and survival of the two-spotted grasshopper: Melanoplus bivilfalus Say (Acridae: Orthoptera). “Can. J. Zool.”, 45, no. 3, 305-19.
  15. HENNEBERRY T.J. 1963. Effect of host plant condition and fertilisation on the two-spotted spider Mite fecondity. “J. Econ. Ent.”, 4, 503-505.
  16. HORSFALL J.G. y DIMOND A.E. 1957. Interactions of tissue sugargrowth substances and disease susceptibility. “z. Pflanzkrankheiten”, 64, p. 415-421.
  17. HOUSE H.L. 1969. Effects of different proportions of nutrients on insects. “Entomol. exp. applic.”, 12, no. 5, 651-69
  18. HOUSE H.L. 1971. Relations bet’veen dietary proportions of nutrients, growth rate, and choice of food in the fly larva Agria affinis. “J. insect. Physiol.”, 17(7), 1225-38.
  19. KENNEDY J.S. 1958. Physiological conditions of tile host plant and susceptibility to aphid attack. “Entomol. exp. applic.”,I, no. 1, 50-65.
  20. KIRALY Z., BARNE B. y ERSEK T. 1972. Hypersensitivity as a consequence not the cause of plant resistance to infection (G. puccinia). “Nature”, t. 239, 5373, 456-57.
  21. KIRCHER H.W., MISIOROWSKI RL. y LICHERMAN F.V. 1970. Resistance of Alfalfa to the Spotted Alfalfa aphid. “J. Econ. ent.”, 63, no. 3, p.964-969.
  22. KNAPP J.L., HEDIN P.A. y DOUGLAS W.A. 1965. Amino-acids and reducing sugars in silks of Com resistant or susceptible to Com Ea~worm. “Ann. Entom. Soc. America”, p. 401-402.
  23. LE BERRE J.R. y PETAVY G. 1965. Action cornparée de quelques milieux nutritifs artifiels sus la fécondité et la reproduction du Criquet migrateur: Locusta rn¡gratorial. “C.R.Ac. Sciences”, 260, no. 22, 5877-80.
  24. MEHROTRA K.N. 1963. Carbohydrate metabolism in the two-spotted Mite. “Adv. Acarology”, t. 1, 232237.
  25. MEHTA R.C., SAXENA K.N. 1973. Gro~~~h of the cotton spotted bollwom Earias fabia (Lepidoptera: Noctuidae) in relation to consurnption, nutritive value and utilisation of food ftom various p¡ants. “Ent. exp. applic.”, 16, 20-30.
  26. MITTLER T.E. 1967. Effect of amino-acid and sugar concentrations on the food uptake of the Aphid Myzus persicae. “Ent. exp. applic.”, 10: 39-51.
  27. MULKERN G.B. 1967. Food selection by grasshopers. “Ann. Rev. Ent” t 1~,59-78.
  28. OBI 1.U. 1975. Physiological mechanism of disease resistance in Zea mays to Helminthosporium fungi. “Diss Abstr. mt.”, B, t. 36, 5, p. 1994.
  29. POE S.L. 1971. Influence of the host plant physiology on populations of Tetranichus urticae (Acarina: Tetranychidae) infesting strawberry plants in peninsular Florida. “Florida Entomoligist”, 54(2), 183-186.
  30. RODRíGUEZ J.G. 1967. Dietetics and nutrition of Tetranychus urticae Koch. “Proced 2e Inter. Cong. Acarology”, 469-75.
  31. SAXENA R.C. 1970. Relative susceptibility of different varieties of onion: Allium cepa to Caliothrips indicus Bagn. (Thripidae – Thysanoptera). “Indian J. Entom.”, 32(I), 98-100.
  32. SCOTT G.E. y GUTHRIE W.D. 1966. Survival of European com borer larvae on resistan treates with nutritional substances. “J. Econ. Ent.”, p. 1265-1267.
  33. STORMS J.J.H. y NOORDINK J.PH. 1970. Nutritional requirements of the two-spotted mite: Tetranychus urticae (Acarina -Tetranychidae). “Academia” Vile, “Europ. Mit”, Symp. Polska.
  34. TOMIYAMA K. 1963. Physiology and biochemistry of disease resistance of plants. “Ann.Rev. of Phytopath.”, 1, 295-324.
  35. WGOD R.K.S. 1972. Introduction: disease resistance in plants. “Proc. R. Soc. London”, B, 181, p. 213232.
¿Qué te ha parecido el artículo? 1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (Ninguna valoración todavía)
Cargando…
La “trofobiosis” como teoría de la resistencia de las plantas

Enlaces relacionados


  • 26
    Shares

Deja un comentario